Search for Two-Neutrino Double-Beta Decay of ¹³⁰Te to Excited States of ¹³⁰Xe with CUORE

E.V. Hansen CUORE collaboration

23 April 2021

Introduction	CUORE	Excited States Search	Conclusions
000	000	000000000000000000	0
Double Beta Decay			

Rare radioactive decay, found in even-even nuclei where single-beta decay is energetically forbidden (e.g. 130 Te)

- Two-neutrino $(2\nu\beta\beta) \Rightarrow$ Observed, $T_{1/2} > 10^{18}$ years $(A, Z) \rightarrow (A, Z + 2) + 2e^- + 2\bar{\nu}_e$
- Neutrinoless $(0\nu\beta\beta) \Rightarrow$ Expected $T_{1/2} > 10^{25}$ years $(A, Z) \rightarrow (A, Z + 2) + 2e^{-1}$

Observation of $0\nu\beta\beta$ is a critical tool to study neutrinos:

- Majorana ($u = ar{
 u}$) or Dirac ($u
 eq ar{
 u}$) nature
- Lepton number violation ($\Delta L = 2$)
- ν mass scale and ordering

n

Nuclear matrix elements (M) are a major source of

Excited States Search

Conclusions O

$$\begin{split} \mathsf{\Gamma}_{0\nu} &= (\,\mathcal{T}_{1/2}^{0\nu})^{-1} = \mathcal{G}_{0\nu} \,\, |\mathcal{M}_{0\nu}|^2 \,\, \langle m_{\beta\beta} \rangle^2 \\ &\langle m_{\beta\beta} \rangle = |\mathcal{U}_{ei}^2 m_i^2| \end{split}$$

Measurements of $2\nu\beta\beta$ and $0/2\nu\beta\beta$ to excited states contribute to understanding of NME, which in turn contributes to neutrino mass measurements.

Ann. Rev. Nucl and Part.Sci. 69 (2019)

Introduction	CUORE	Excited States Search	Conclusions
00●	000	00000000000000000	0
Table of Contents			

Search in CUORE for ¹³⁰Te Double Beta Decay to Excited States

- Current Status (*new article!*)
- Expanding the Search by Exploiting Detector Geometry & Response
- Looking Forward

Introduction	CUORE	Excited States Search
000	●00	000000000000000000000000000000000000000

Cryogenic Underground Observatory for Rare Events (CUORE)

 $^{130}\text{Te} \rightarrow ~^{130}\text{Xe} + 2\text{e}^{-}$

- $\bullet~988~TeO_2$ bolometers (206 kg $^{130}Te)$ instrumented with NTD thermistors
- Detector array cooled to operating temperature of ${\sim}10\text{mK}.$
- Stringent radiopurity control on materials and assembly
- Target $\Delta E = 5$ keV at Q-value
- Target $b = 10^{-2} \text{ ct/keV/kg/yr}$

Expected sensitivity to $\mathsf{T}_{1/2}$ of $0\nu\beta\beta$ in $^{130}\mathsf{Te}$ (5 yr livetime): 9.5 \times 10^{25} yr (90% CL) (m_{\beta\beta} \leq (50-130) meV)

- Newest analysis includes pulse shape discrimination method based on principle component analysis (PCA) where the average pulse is treated like a leading principal component. ⇒ increase in efficiency and similar background rejection power across all energies compared to the previous method.
- Bayesian Analysis using BAT (MCMC)
- \bullet Systematics: repeat fits with nuisance parameters, allow negative rates (<0.8% impact on limit).

Introduction	CUORE	Excited States Search	Conclusions
000	000	000000000000000000000000000000000000000	0
A note on CUORE events			

Multiplicity (M):

The number of crystals engaged in a single event.

- This depends in part on:
 - energy threshold (40 keV*),
 - a distance cut (150 mm, 3 crystals wide), and
 - timing resolution (events within \pm 5 ms)
- Most $0\nu\beta\beta$ events are M=1, and M≤2 are the main priorities for $0\nu\beta\beta$ search analyses.

* This is an analysis threshold, set manually. The bolometric threshold depends on the channel, and 97% of channels have thresholds beneath this value.

Introduction	CUORE	Excited States Search	Conclusions
000	000	•0000000000000000000000000000000000000	0
¹³⁰ Te Double Beta D	ecay to Excited	States ··· Status	arXiv:2101 10702

new article! — Adams et.al. Search for Double-Beta Decay of ¹³⁰ Te to the 0⁺ States of ¹³⁰Xe with CUORE (2021) — submitted to EPJ C ::: arXiv:2101.10702

Pattern	BR [%]	Energy γ_1	Energy γ ₂	Energy γ ₃
А	86%	1257 keV	536 keV	-
В	12%	671 keV	586 keV	536 keV
С	2%	1122 keV	671 keV	-

Introduction 000		CUORE 000		Excited S	tates Search 00000000000000	Conclusions O
¹³⁰ Te Doubl	e Beta De	ecay to Exci	ted States :	:: Status	arXiv:21	01.10702
Pattern	BR [%]	Energy γ_1	Energy γ ₂	Energy γ ₃		
A B C	86% 12% 2%	1257 keV 671 keV 1122 keV	536 keV 586 keV 671 keV	536 keV -	 ββ event vertex γ path γ energy deposition 	
The publishe gammas in t Published an	ed analysis ro he crystals. alysis avoids	e quires full con events where	tainment of fi	nal state		√
 gamma en scattered g These events fitting at the this paper we 	ergy lost in r gammas appo will have th appropriate e define signa	non-active dete ear in more tha e cleanest sign gamma emissio ature "3A0" as	ctor material n one crystal. ature, and allov on energies. Fo	w for peak r example, in		×
	$E_1 \sim 1257$ k	eV $E_2 \sim 530$	5 keV E3 =	ββ	image adapted from G. Fantini	

Introduction	CUORE	Excited States Search	Conclusions
000	000	000000000000000000000000000000000000000	0
100			

Pattern	BR [%]	Energy γ_1	Energy γ ₂	Energy γ ₃
А	86%	1257 keV	536 keV	-
В	12%	671 keV	586 keV	536 keV
С	2%	1122 keV	671 keV	-

ID	Energy [keV]	Energy [keV]	Energy [keV]	Energy [keV]
2A0 - 2B1	1270	1257		
2A1-2B2-2C1	1794	734		
2A2-2B3	1991	536		
3A0	1257	734	536	
2B0 - 2C0	1856	671		
2B4	1320	1207		
2B5	1941	586		
2B6 - 2C0	1405	1122		
3B0	1270	671	586	
3B1-3C0	1122	734	671	
3B2	1257	734	536	
3B3	1320	671	536	
3B4	1207	734	586	
3B5	1405	586	536	
4B0	734	671	586	536

G. Fantini et al. Sensitivity to double beta decay of ¹³⁰ Te to the first 0+ excited state of ¹³⁰ Xe in CUORE. J. of Phys.: Conference Series, 1468, 02 2020.

Assigning patterns to energy deposits that contribute to the overall sensitivity of this search leads to ${\bf 15}$ distinguishable signatures across the three patterns.

Some signatures are combined as they are indistinguishable:

$$\begin{array}{ccc} 2A0 & 2B1 \\ E_1 = 536 + \beta\beta(734) \text{ keV} & E_1 = 536 + \beta\beta(734) \text{ keV} \\ E_2 = 1257 \text{ keV} & E_2 = 671 + 586 \text{ keV} \end{array}$$

(Left) Distinguishable signatures of $0\nu\beta\beta$ to excited states. ($2\nu\beta\beta$ signatures differ by how the $\beta\beta$ event is identified: a peak, not a spectrum)

arXiv:2101 10702

Introduction	CUORE	Excited States Search	Conclusions
000	000	000000000000000000000000000000000000000	0
100			

Pattern	BR [%]	Energy γ_1	Energy γ_2	Energy γ_3
А	86%	1257 keV	536 keV	-
В	12%	671 keV	586 keV	536 keV
С	2%	1122 keV	671 keV	-

ID	Energy [keV]	Energy [keV]	Energy [keV]	Energy [keV]
2A0 - 2B1	1270	1257		
2A1-2B2-2C1	1794	734		
2A2-2B3	1991	536		
3A0	1257	734	536	
2B0 - 2C0	1856	671		
2B4	1320	1207		
2B5	1941	586		
2B6 - 2C0	1405	1122		
3B0	1270	671	586	
3B1-3C0	1122	734	671	
3B2	1257	734	536	
3B3	1320	671	536	
3B4	1207	734	586	
3B5	1405	586	536	
4B0	734	671	586	536

G. Fantini et al. Sensitivity to double beta decay of ¹³⁰ Te to the first 0+ excited state of ¹³⁰ Xe in CUORE. J. of Phys.: Conference Series, 1468, 02 2020.

Monte Carlo simulations were used to identify the strongest contributions to sensitivity.

Signal simulations

- Produced separately for each pattern
- Gammas monochromatic, w/ no angular correlations*
- Beta energies extracted from appropriate spectrum (not sensitive to 2νββ spectral shape).

Background simulations

- CUORE background model
- Cosmic muon flux
- $2
 u\beta\beta$ of ¹³⁰Te to ground state

5 keV FWHM resolution.

Introduction	CUORE	Excited States Search	Conclusions
000	000	000000000000000000000000000000000000000	0

Pattern	BR [%]	Energy γ_1	Energy γ_2	Energy γ ₃
А	86%	1257 keV	536 keV	-
В	12%	671 keV	586 keV	536 keV
С	2%	1122 keV	671 keV	-

ID	Energy [keV]	Energy [keV]	Energy [keV]	Energy [keV]
2A0 - 2B1	1270	1257		
2A1-2B2-2C1	1794	734		
2A2-2B3	1991	536		
3A0	1257	734	536	
2B0 - 2C0	1856	671		
2B4	1320	1207		
2B5	1941	586		
2B6 - 2C0	1405	1122		
3B0	1270	671	586	
3B1-3C0	1122	734	671	
3B2	1257	734	536	
3B3	1320	671	536	
3B4	1207	734	586	
3B5	1405	586	536	
4B0	734	671	586	536

G. Fantini et al. Sensitivity to double beta decay of ¹³⁰ Te to the first 0+ excited state of ¹³⁰ Xe in CUORE. J. of Phys.: Conference Series, 1468, 02 2020.

 $\epsilon = \epsilon_s \ imes (\epsilon_{cut})^M \ imes \epsilon_{acc}$

Containment efficiency, ϵ_s

Probability that energy released by the decay matches the topology of the signature.

$$\epsilon_s = \sum_p BR_p \cdot \frac{[N^{(sel)}]_p^{(s)}}{[N^{(tot)}]_p}$$

Analysis efficiency, ϵ_{cut}

(per dataset) Includes trigger, reconstruction, pile-up and PSA cut efficiencies.

Accidentals efficiency, ϵ_{acc}

(per dataset) Efficiency of properly identifying events while avoiding accidental coincideneces.

Green signatures were identified to have the highest overall efficiencies after accounting for background in their respective ROI.

arXiv:2101 10702

Introduction	CUORE	Excited States Search	Conclusions
000	000	000000000000000000000000000000000000000	0

arXiv:2101.10702

0νββ					
	2A0-2B1	2A1-2B2	3A0		
Containment	4.6(2)	2.9(1)	2.5(1)		
Cut	78.	7(2)	69.8(3)		
Accidentals		98.7(1)			
Total	3.5(2)	2.3(1)	1.7(1)		
2νββ					
	2A0-2B1	2A1-2B2	3A0		
Containment	4.2(2)	2.4(1)	0.19(1)		
Cut	78.	7(2)	69.8(3)		
Accidentals		98.7(1)			
Total	3.2(1)	1.9(1)	0.13(1)		

- Dominated strongly by containment efficiency *
- Unbinned Bayesian fit with MCMC using BAT
- This analysis fits specifically the event peak which has the highest sensitivity over background (for 2A0, for example, the 1257 keV peak).
- Systematic uncertainty evaluated to have a <0.4% effect, dominated by uncertainty in modeling the detector response function.

Introduction	CUORE	Excited States Search	Conclusions
000	000	00000000000000000000000000000000000000	0
¹³⁰ Te Double Bet	a Decay to Excited S	tates ::: Status	arXiv:2101.10702

new article! — Adams et.al. Search for Double-Beta Decay of 130 Te to the 0^+ States of 130 Xe with CUORE (2021) — submitted to EPJ C ::: arXiv:2101.10702

 $2\nu\beta\beta$ excited states spectra adjusted to EPJC preprint lower bound.

We must look for ways in which $2\nu\beta\beta$ excited states signals will manifest that will be identifiable beyond looking at peaks...

Introduction	CUORE	Excited States Search	Conclusions
000	000	000000000000000000000000000000000000000	0
130 Te 2 $ uetaeta$ to	Excited States ::: Status		

Looking specifically at $2\nu\beta\beta$ decay to excited states, we see that they have a large M>2 component. The only M>2 pattern in the published analysis is **3A0**, defined to be

 $E_1 \sim 1257 \text{ keV}$ $E_2 \sim 536 \text{ keV}$ $E_3 = 0 - 734 \text{keV}$

This is clearly missing a large portion of the data, even just in M=3... so what is happening?

Introduction	CUORE	Excited States Search	Conclusio
000	000	000000000000000000000000000000000000000	0

Expanding the Search by Exploiting Detector Geometry & Response

We must relax the requirement for full containment & clean gamma depositions.

The events where gammas scatter between or out of crystals are particularly interesting and compose a non-negligible fraction of the total. We can look at these scattered events specifically by

- performing a spectral search
- · seeking out events whose partial sums equal the gamma energies

image adapted from G. Fantini

ntroduction	CUORE	Excited States Search	Conc
000	000	000000000000000000000000000000000000000	0

¹³⁰Te $2\nu\beta\beta$ to Excited States ::: Search in a wider Energy Space

tag	1257 keV	536 keV	Spectral	Population
M3-01-00	<i>E</i> ₁	E ₂	E ₃	0.10
M3-01-11	$E_1 + E_2$	E ₃		0.01
M3-01-12	E_1	$E_{2} + E_{3}$		0.01
M3-02-00	<i>E</i> ₁		E_2, E_3	0.11
M3-02-11	$E_1 + E_2$		E ₃	0.17
M3-02-21	$E_1 + E_2 + E_3$			0.01
M3-03-00		<i>E</i> ₁	E_2, E_3	0.16
M3-03-12		$E_1 + E_2$	E_3	0.08
M3-03-22		$E_1 + E_2 + E_3$		0.00
No peak			E_1, E_2, E_3	0.35

Population fraction as a function of tag in 100k simulated $2\nu\beta\beta$ Branch 1 events, ideal resolution; no analysis cuts.

Simulated M3 $2\nu\beta\beta$ Branch 1 events. Single channel energies on each axis. (PRELIMINARY)

Create a sorting ("tagging") system for identifying gamma + spectral events, including the case where two or more crystals sum to a single gamma energy.

This technique *significantly* improves access to the energy space.

troduction	CUORE	Excited States Search (
00	000	000000000000000000000000000000000000000

 $^{130}\text{Te}~2\nu\beta\beta$ to Excited States ::: Search in a wider Energy Space

tag	1257 keV	536 keV	Spectral	Population
M3-01-00	<i>E</i> ₁	<i>E</i> ₂	E ₃	0.10
M3-01-11	$E_1 + E_2$	E ₃		0.01
M3-01-12	E_1	$E_2 + E_3$		0.01
M3-02-00	<i>E</i> ₁		E_2, E_3	0.11
M3-02-11	$E_1 + E_2$		E ₃	0.17
M3-02-21	$E_1 + E_2 + E_3$			0.01
M3-03-00		<i>E</i> ₁	E_2, E_3	0.16
M3-03-12		$E_1 + E_2$	<i>E</i> ₃	0.08
M3-03-22		$E_1 + E_2 + E_3$		0.00
No peak			E_1, E_2, E_3	0.35

Simulated M3 $2\nu\beta\beta$ Branch 1 events. Single channel energies on each axis. (PRELIMINARY)

Create a sorting ("tagging") system for identifying gamma + spectral events, including the case where two or more crystals sum to a single gamma energy.

This technique *significantly* improves access to the energy space.

120	000	000000000000000000000000000000000000000	0
Introduction	CUORE	Excited States Search	Conclusions

³⁰Te $2\nu\beta\beta$ to Excited States ::: Search in Energy Space

Theoretically, identifying signal signatures can decrease background in the signature regions of interest.

Introduction	CUORE	Excited States Search	Conclusions
000	000	000000000000000000000000000000000000000	0
¹³⁰ Te $2\nu\beta\beta$ to Excited Sta	ates ::: Search in Energy	Space	

Example: M3-02-11:

- $E_1 + E_2 = 1257 \text{ keV}$
- $E_3 = \text{spectral}$

Spectral channel could be the $\beta\beta$ signal, a scattered 536 keV gamma, or a combination of the two.

Background (e.g. ⁴⁰K, ²¹⁰Pb) sorted through the same tagging system produces significantly different spectra, which can be fed into a global fit. Such backgrounds may also have accompanying tags (single & summed gammas) which can lower their contamination into signal spectra.

Introduction	CUORE	Excited States Search	(
000	000	000000000000000000000000000000000000000	
100			

¹³⁰Te $2\nu\beta\beta$ to Excited States ::: Search in Energy Space

We can remove some background events by tagging their summed energy as well.

 40 K has a characteristic 1460 keV gamma line, which can be split between crystals, resulting in energies that may appear like signal tags. \Rightarrow If, instead, we create a tag to look for events that prioritize a 1460 keV summation, that can remove events that could contaminate signal spectra.

Introduction	CUORE	Excited States Search
000	000	000000000000000000000000000000000000000
100		

¹³⁰Te $2\nu\beta\beta$ to Excited States ::: Search in Energy Space

We can remove some background events by tagging their summed energy as well.

 40 K has a characteristic 1460 keV gamma line, which can be split between crystals, resulting in energies that may appear like signal tags. \Rightarrow If, instead, we create a tag to look for events that prioritize a 1460 keV summation, that can remove events that could contaminate signal spectra.

000	000		0
		C	Ŭ

¹³⁰Te $2\nu\beta\beta$ to Excited States ::: Search in Energy Space

Simulated M3 $2\nu\beta\beta$ Branch 1 events. Single channel energies on each axis.

- Tagging energy deposits, namely their sums, creates additional access to the energy space.
- There is additional background rejection power in tagging summed gammas which will not occur, in ⁴⁰K for example, in the normal peak.
- Tags have been designed for all Branches of $2\nu\beta\beta$ excited states, as well as K40, and modules to apply them to CUORE Monte Carlo data.
- Working now to build modules for applying to data.

Introduction	CUORE	Excited States Search	Concl
000	000	000000000000000000000000000000000000000	0
100			

¹³⁰Te $2\nu\beta\beta$ to Excited States ::: Search in Crystal Space

Another non-traditional analysis path we are exploring is how events are spread in crystal-space.

- Default distance cut is 150mm. Roughly 40-45% of $2\nu\beta\beta$ to excited states events pass this cut.
- Relaxing this cut gives access to space that is not dominated by traditional backgrounds.

(Above) Includes background with traditional cut. (black dotted) (Below) Signal only with no distance cut.

Introduction	CUORE	Excited States Search	Conclusion
000	000	000000000000000000000000000000000000000	0

¹³⁰Te $2\nu\beta\beta$ to Excited States ::: Search in Crystal Space

Distances between crystals is discrete and for events with a small footprint (or where the distance cut is enforced), average distance is not a good discriminator.

A naive look at which crystals close to a primary vertex were included in a multiplet showed a correlation with events and their "nearest neighbors".

Simple BDT with inputs of "side-", "edge-", "corner-", "no-" neighbors identified patterns that were more likely to be signal (example at right).

*This analysis was performed before angular correlation validation, which will be taken into account in the final result.

¹³⁰Te $2\nu\beta\beta$ to Excited States ::: Search in Crystal Space

- (Above) Three sources of events ($2\nu\beta\beta$ excited states, 40 K on TeO₂ volume, 210 Pb on TeO₂ surface) in this analysis comparing total event energy (Y) vs the displacement of the center of the event when weighted by crystal energy (X)
- Widening the distance over which a multiplet is evaluated (traditional cut is 150mm, or roughly 3 crystals) can improve this discriminator

Crystal topology is an encouraging angle to look at higher multiplicity events.

Introduction	CUORE	Excited States Search	Conclusions
000	000	00000000000000000000	0
Looking Forward			

Simulated M3 $2\nu\beta\beta$ Branch 1 events. Single channel energies on each axis.

- Applying this analysis to the newly released 1-tonne-year data will increase sensitivity by a factor of ~4.
- We are aiming for a factor of ~10 increase, which we think we can reach with signal efficiency, tagging backgrounds, & topological cuts.
- Next analysis rollout will likely include events in which a gamma scatters over two or more crystals, but will still fit only over peak regions.
- Machine-learning algorithms can help to separate signal-like event topologies from background-like topologies.
- A Bayesian MCMC is under development to fit both signal- and background-like components (~dozen components over ~30 event signatures)

Introd	uction
000	

CUORE 000

New results from CUORE: arXiv: 2104.06906

Search for decay to excited states in CUORE is very active!

- Article submitted to EPJ C ::: arXiv:2101.10702 [nucl-ex]
- The search will be extended by analyzing advanced topologies in position- and energy-space.
 - Events where a single gamma scatters across multiple crystals will be included.
 - The distribution of the event multiplet across the detector may provide additional sensitivity.

Erin V. Hansen evhansen@berkeley.edu